Development of Filter Fabric Barrier to Reduce Aquatic Impacts at Water Intake Structures

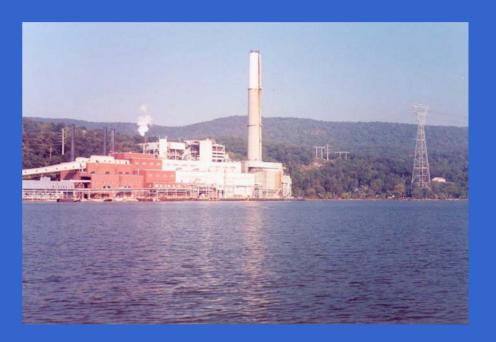
Matthew J. Raffenberg
John A. Matousek
William D. Saksen
Andrew J. McCusker
Edward W. Radle

Filter Fabric Barrier Development

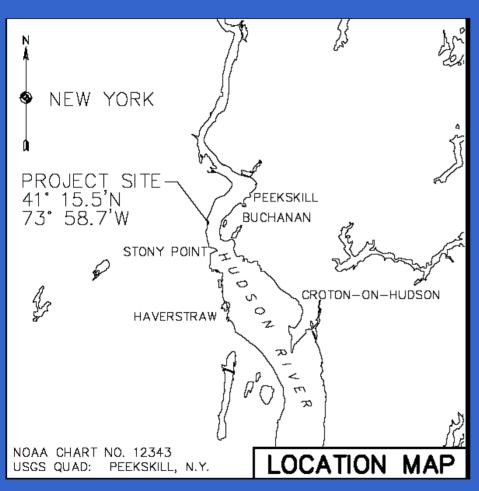
- A six-year research program to develop a technology to minimize adverse environmental impact at water intake structures
- Development of a permeable fabric that works as a physical barrier to exclude fish eggs and larvae from entering intake structures
- Resulting technology: Gunderboom Marine Life Exclusion System™ (MLES™)

Gunderboom MLES™ as an Intake Technology

The Gunderboom MLES™ is currently incorporated in three NYSDEC SPDES permits


- Two closed-cycle facilities
 - Bethlehem Energy Center
 - Bowline Point Generating Station Unit 3
- One once-through facility
 - Lovett Generating Station

Contributors to the Gunderboom Development


- Orange and Rockland Utilities Inc.
- Mirant Inc. (Southern Company)
- Gunderboom Inc.
- Lawler, Matusky and Skelly Engineers LLP (LMS)
- New York State Department of Environmental Conservation (NYSDEC)
- Hudson Riverkeeper: Pisces Conservation Ltd. / Carpenter Associates

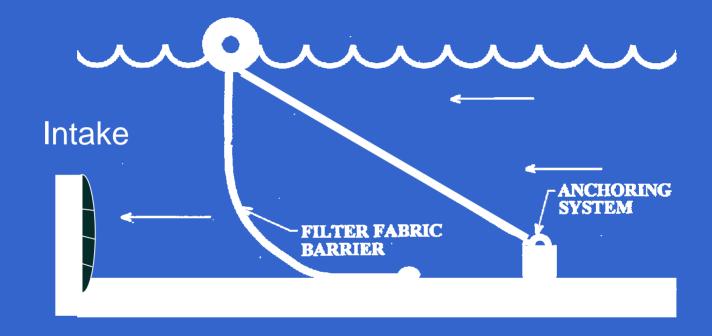
Lovett Generating Station

- Fossil fuel powered
- Three generating units
- 462-MW capacity
- Once-through cooling
- 391-MGD non-contact cooling water

Facility Location

- Tomkins Cove, New York
- West Bank of the Hudson River
- 42 river miles upstream of New York City

Hudson River Characteristics at Lovett



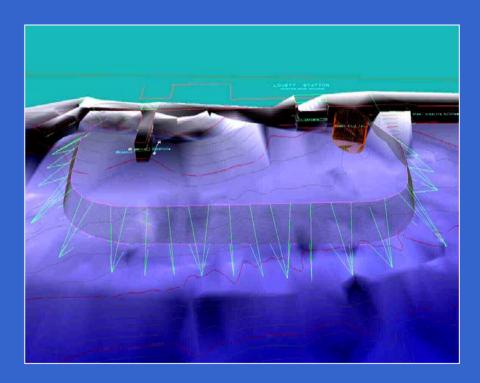
- 160,000 CFS / 3-5 FPS currents
- Tidal range 3 ft / Salinity 0-10 PPT
- Periods of high total suspended solids (TSS)
- 35-ft maintained navigation channel

Site-Specific Considerations

- Select fabric to exclude the smallest size of target species
- Physical limitations of the site
- Water withdrawal requirements and throughfabric flow rates
- Water level fluctuations, currents, waves
- Waterborne sediments, debris, ice, etc.

What is a Filter Fabric Barrier?

- Physical barrier made of permeable fabric
- Interstices of fabric have an Apparent Opening Size (AOS) of 20 - 200 microns


Filter Fabric Perspective

Pre-deployment

Deployment

3-dimensional perspective

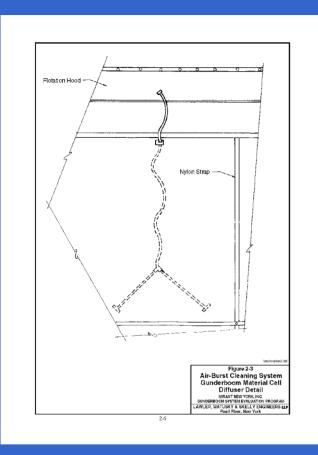
Annual Development Goals

- 1995 Gunderboom System concept
- 1996 Manual AirBurst™ cleaning system / spud-type anchors (3-unit deployment)
- 1997 Manual AirBurst™ cleaning / dead-weight anchoring system
- 1998 Automated AirBurst™ cleaning / 500-micron perforations / monitoring equipment
- 1999 Automatic AirBurst™ cleaning / monitoring equipment
- 2000 Improve field maintenance procedures, improve mooring hardware and test new zipper connections

1995 Deployment

- Single-ply fabric
- Approximately 300 ft long
- 20-30 ft deep

Danforth anchors


Annual Development Goals

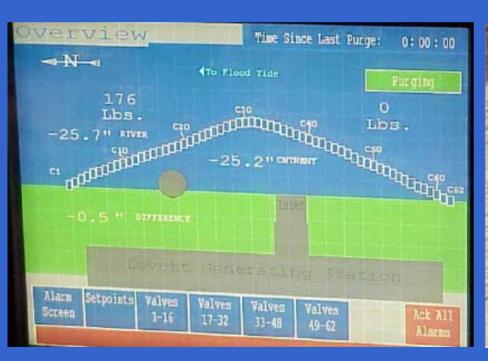
- 1995 Gunderboom System concept
- 1996 Manual AirBurst™ cleaning system / spud-type anchors (3-unit deployment)
- 1997 Manual AirBurst™ cleaning / dead-weight anchoring system
- 1998 Automated AirBurst™ cleaning / 500-micron perforations / monitoring equipment
- 1999 Automatic AirBurst™ cleaning / monitoring equipment
- 2000 Improve field maintenance procedures, improve mooring hardware and test new zipper connections

Annual Development Goals

- 1995 Gunderboom System concept
- 1996 Manual AirBurst™ cleaning system / spud-type anchors (3-unit deployment)
- 1997 Manual AirBurst™ cleaning / dead weight anchoring system
- 1998 Automated AirBurst™ cleaning / 500-micron perforations / monitoring equipment
- 1999 Automatic AirBurst™ cleaning / monitoring equipment
- 2000 Improve field maintenance procedures, improve mooring hardware and test new zipper connections

AirBurst[™] System

- Two-ply panelized fabric
- Air hose extending to base of fabric



- Compressed air supplied to header
- Air released at depth
- Fabric billows and shakes to remove sediments

AirBurst™ System

Touch-screen control panel

- Strain Gauges
- Head differential monitors

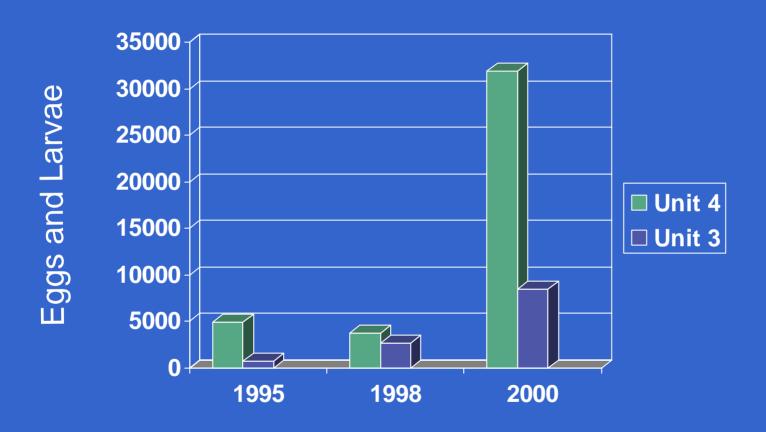
Annual Development Goals

- 1995 Gunderboom System concept
- 1996 Manual AirBurst™ cleaning system / spud-type anchors (3-unit deployment)
- 1997 Manual AirBurst™ cleaning / dead-weight anchoring system
- 1998 Automated AirBurst™ cleaning / 500-micron perforations / monitoring equipment
- 1999 Automatic AirBurst™ cleaning / monitoring equipment
- 2000 Improve field maintenance procedures, improve mooring hardware and test new zipper connections

2000 Deployment

- Two-ply fabric with 500-micron perforations (8000/ft²)
- Approximately 500 ft long
- 20-30 ft deep
- Dead-weight anchors
- Automated airburst system with strain gauges and head differential monitors

Zipper Test



- Improve deployment, removal and maintenance
- Allow for damaged panels to be replaced

Ichthyoplankton Monitoring

- Ichthyoplankton monitoring conducted inside and outside of the MLES™ during 1995, 1998, 2000 deployments
- Overall program resulted in an 80% reduction in ichthyoplankton entering the facility
- Periodic elevated densities inside were linked to breaches of the system

Ichthyoplankton Program

Unit 4 – Unprotected / Unit 3 Protected by Gunderboom

Impingement Experiment

- 24-hr impingement study conducted on American shad
 - 100 eggs added to McDonald Jars with Gunderboom fabric
 - 5 gpm/ft² flow rate
- Swimming studies with dayold American shad
 - Larvae added to flowthrough tank with Gunderboom fabric
 - 5 gpm/ft² flow rate

Impingement Experiment Results

- Eggs
 - Did not adhere to fabric
 - 1-2% mortality occurred
 - No difference between mortality in the control jars and mortality in the test jars

- Larvae
 - Did not orient toward flow
 - Did not impinge on fabric with through-fabric velocity of 5 gpm/ft²

Program Observations

- Operated effectively under high river flows, debris conditions, and major storm events
- An effective physical barrier for fish eggs and larvae
- Minimal biological growth experienced; growth did not adversely affect operation

System will perform best when integrated into facility operations

Program Summary

- Minimize entrainment and impingement
- Maintain in dynamic river environment
- Less expensive than many alternative technologies
- BTA in three NYSDEC SPDES permits
- Being considered by NYSDEC at other selected sites